

Reg. No.:		
-----------	--	--

Question Paper Code: 52439

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Third Semester

Electronics and Communication Engineering EC 2204: SIGNALS AND SYSTEMS (Common to Biomedical Engineering) (Regulations 2008)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART-A

 $(10\times2=20 \text{ Marks})$

- 1. Plot the signal x[n] = u[n] u[n-4].
- 2. Determine whether the signal $x(t) = \cos \frac{\pi}{2}t$ is periodic or not. Also find its period if it is periodic.
- 3. State Dirichlet's conditions and its significance in continuous time Fourier series representation.
- 4. Find the Laplace transform of the signal $x(t) = -e^{-at}u(-t)$, and its associated ROC.
- 5. Two systems with impulse response $h_1(t)$ and $h_2(t)$ respectively are connected in series. What is the overall impulse response of the system?
- 6. An LTI system with input x(t) and impulse response h(t) produces an output y(t). What is the output of the same system if the input is $x(t-t_0)$ and impulse response is $h(t-t_1)$?
- 7. Find the corresponding discrete time signal x(n) for the analog sinusoidal signal $x(t) = \cos 40 \pi t$ if it is sampled at a rate of $F_s = 60$ Hz.
- 8. Find the z-transform of the signal $x(n) = \delta[n-k]$ for k > 0. Also specify its ROC.

- 9. Convolve the following signals $x(n) = \{1, 2, 3\}$ and $h(n) = \{1, 1, 2\}$.
- 10. Determine the z-transform of the following signal $x(n) = \alpha^n u[n]$, $|\alpha| > 1$ and also specify whether Fourier transform of the signal exists.

(5×16=80 Marks)

- 11. a) i) Determine whether the discrete time system y[n] = nx[n-1] + 3 is linear, time invariant, memoryless and causal. Justify your answers, with proof. (10)
 - ii) "Any arbitrary signal x(n) can be represented as a linear combination of weighted shifted impulses $\delta[n-k]$ ". Justify this statement with an example. (6)

(OR)

- b) Given $x[n] = \{3, 2, 1, 0, 1, 2, 3\}$ plot the following signals.
 - i) $x \left[-2n+1 \right]$
 - ii) x [n] u[1-n]
 - iii) x[n] {u [n+2] u[n]}
 - iv) $x[n] + \{u[n] u[n-4]\}$
- 12. a) Find the Fourier series coefficients of the signal shown below.

Also plot its magnitude and phase spectrum.

(OR)

b) Find the Laplace transform of the signal $x(t) = \cos \Omega_0 tu(t)$ and also specify its ROC.

- 13. a) Consider a continuous time LTI system described by $\frac{d}{dt}y(t) + 2y(t) = x(t)$ using Fourier transform find the output y(t) for the input signal $x(t) = e^{-t} u(t)$.

 (OR)
 - b) Using convolution integral formula convolve the following signals. $x(t) = e^{-t}u(t)$ and $h(t) = e^{-2t} u(t)$.
- 14. a) State and explain sampling theorem with necessary equations and illustrations. (OR)
 - b) State and prove any four properties of z-transform.
- 15. a) Find the inverse z-transform of $x(z) = \frac{z}{z^2 0.25z 0.375}$ by using partial fraction method for the following ROCs.

i) ROC: |z| > 0.75

ii) ROC: |z| < 0.5.

(OR)

b) Given the difference equation representation of the system

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = x[n] - \frac{1}{2}x[n-1].$$
 Find the response
$$y[n] \text{ for the input } x[n] = \left(\frac{1}{2}\right)^n \text{ u(n) using DTFT.}$$

and a first term to be a series of the series of the series of

to at Partition as a property of the last to the property of the state of the state

அடு இது தன் கூட்டிய பட்ட பட்ட மாட்டிய

All=121 658 ii All - All

and the second of the second s

rate passing the later and all office